

CS106A Handout 09

Spring 2010 April 7th, 2010

Assignment 2: Simple Java Programs
This assignment was written by Eric Roberts.

Your job in this assignment is to write programs to solve each of these problems.
To help you get started early, we’ll be holding YEAH (Your Early Assignment Help) hours
on Thursday, April 8th at 7 p.m. in Braun Auditorium.

Due: Friday, April 16th at 5:00 p.m.

Problem 1: Brick Pyramids

Write a GraphicsProgram subclass that draws a pyramid consisting of bricks arranged in
horizontal rows, so that the number of bricks in each row decreases by one as you move
up the pyramid, as shown in the following sample run:

The pyramid should be centered at the bottom of the window and should use constants for
the following parameters:

BRICK_WIDTH The width of each brick (30 pixels)
BRICK_HEIGHT The height of each brick (12 pixels)
BRICKS_IN_BASE The number of bricks in the base (12)

The numbers in parentheses show the values for this diagram, but you must be able to
change those values in your program and still produce a reasonable picture.

Problem 2: Rainbow

Write a GraphicsProgram subclass that draws a rainbow that looks like this:

The colors of the stripes are clear in the web version of the picture, but are hard to see in
the black-and-white handout. Starting at the top, the six arcs are red, orange, yellow, green,
blue, and magenta, respectively; cyan makes a lovely color for the sky.

At first glance, it might seem as if you need to draw arcs on the screen, even though you
won’t actually learn about the GArc class until Chapter 8. As it turns out, that class doesn’t
really help much. The program that produced the diagram shown at the bottom of the
previous page uses only circles, although seeing how this is possible forces you to think
outside the box—in a literal rather than a figurative sense. The common center for each
circle is some distance below the bottom of the window, and the diameters of the circles
are wider than the screen. The GraphicsProgram shows only the part of the figure that
actually appears in the window. This process of reducing a picture to the visible area is
called clipping.

Rather than specify the exact dimensions of each circle, play around with the sizes and
positioning of the circles until you get something that matches your aesthetic sensibilities.
The only things we’ll be concerned about are:

o The top of the arc should not be off the screen.
o Each of the arcs in the rainbow should get clipped along the sides of the window,

and not along the bottom.
o Your rainbow should be symmetric and nicely drawn, regardless of window size.

 2

Problem 3: Graphics Hierarchy

Write a GraphicsProgram subclass that draws a partial diagram of the acm.graphics
class hierarchy, as follows:

The only classes you need to create this picture are GRect, GLabel, and GLine. The
tricky part is specifying the coordinates so that the different elements of the picture are
aligned properly. The aspects of the alignment for which you are responsible are:

o The width and height of the class boxes should be specified as named constants
so that they are easy to change.

o The labels should be centered in their boxes. You can find the width of a label
by calling label.getWidth() and the height it extends above the baseline by
calling label.getAscent(). If you want to center a label, you need to shift
its origin by half of these distances in each direction.

o The connecting lines should start and end at the center of the appropriate edge
of the box.

o The entire figure should be centered both vertically and horizontally.

Problem 4: Quadratic Formula

In high-school algebra, you learned that the standard quadratic equation

ax2 + bx + c = 0

has two solutions given by the formula

x =
–b ± b2 – 4ac

2a

The first solution is obtained by using + in place of ±; the second is obtained by using – in
place of ±. Most of this expression contains simple operators covered in Chapter 3. The
one piece that’s missing is taking square roots, which you can do by calling the standard
function Math.sqrt. For example, the statement

double y = Math.sqrt(x);

 3

sets y to the square root of x.

Write a ConsoleProgram that accepts values for a, b, and c, and then calculates the two
solutions (which may both be the same). If the quantity under the square root sign is
negative, the equation has no real solutions, and your program should display a message to
that effect. You may assume that the value for a is nonzero. Your program should be able
to duplicate the following sample run:

Problem 5: Determining the Range

Write a ConsoleProgram that reads in a list of integers, one per line, until a sentinel
value of 0 (which you should be able to change easily to some other value). When the
sentinel is read, your program should display the smallest and largest values in the list, as
illustrated in this sample run:

Your program should handle the following special cases:

o If the user enters only one value before the sentinel, the program should report
that value as both the largest and smallest.

o If the user enters the sentinel on the very first input line, then no values have
been entered, and your program should display a message to that effect.

 4

Problem 6: Hailstones

Douglas Hofstadter’s Pulitzer-prize-winning book Gödel, Escher, Bach contains many
interesting mathematical puzzles, many of which can be expressed in the form of computer
programs. Of these, most require programming skills well beyond the second week of CS
106A. In Chapter XII, Hofstadter mentions a wonderful problem that is well within the
scope of the control statements from Chapter 4. The problem can be expressed as follows:

Pick some positive integer and call it n.
If n is even, divide it by two.
If n is odd, multiply it by three and add one.
Continue this process until n is equal to one.

On page 401 of the Vintage edition, Hofstadter illustrates this process with the following
example, starting with the number 15:

 15 is odd, so I make 3n+1: 46
 46 is even, so I take half: 23
 23 is odd, so I make 3n+1: 70
 70 is even, so I take half: 35
 35 is odd, so I make 3n+1: 106
 106 is even, so I take half: 53
 53 is odd, so I make 3n+1: 160
 160 is even, so I take half: 80
 80 is even, so I take half: 40
 40 is even, so I take half: 20
 20 is even, so I take half: 10
 10 is even, so I take half: 5
 5 is odd, so I make 3n+1: 16
 16 is even, so I take half: 8
 8 is even, so I take half: 4
 4 is even, so I take half: 2
 2 is even, so I take half: 1

As you can see from this example, the numbers go up and down, but eventually—at least
for all numbers that have ever been tried—comes down to end in 1. In some respects, this
process is reminiscent of the formation of hailstones, which get carried upward by the
winds over and over again before they finally descend to the ground. Because of this
analogy, this sequence of numbers is usually called the Hailstone sequence, although it
goes by many other names as well.

Write a ConsoleProgram that reads in a number from the user and then displays the
Hailstone sequence for that number, just as in Hofstadter’s book, followed by a line
showing the number of steps taken to reach 1. For example, your program should be able
to produce a sample run that looks like this:

 5

 The fascinating thing about this problem is that no one has yet been able to prove that it

always stops. The number of steps in the process can certainly get very large. How
many steps, for example, does your program take when n is 27?

 6

