

CS106B Handout 19

Spring 2010 April 19th, 2010

Assignment 3: Boggle
Thanks to Todd Feldman for the original idea behind the Boggle assignment.

The Game of Boggle

Those of you fortunate enough to have spent summers seeing the world from the back of
the family station wagon with the 'rents and sibs may be familiar with Boggle, the little
word game that travels so well, and those who didn't will soon become acquainted with
this vocabulary-building favorite. The Boggle board is a 4x4 grid onto which you shake
and randomly distribute 16 dice. These 6-sided dice have letters rather than numbers on
the faces, creating a grid of letters from which you can form words. In the original version,
the players all start together and write down all the words they can find by tracing by a
path through adjoining letters. Two letters adjoin if they are next to each other horizontally,
vertically, or diagonally. There are up to eight letters adjoining a cube. A letter can only be
used once in the word. When time is called, duplicates are removed from the players' lists
and the players receive points for their remaining words based on the word lengths.

Solutions to Warm-up Problems Due: Monday, April 26th at 5:00 p.m.
Solution to Boggle Due: Friday, April 30th at 5:00 p.m.

This part of Assignment 3 is to write a program that plays a fun, graphical rendition of this
little charmer, adapted to allow the human and machine to play one another. As you can
see from the screen shot above, the computer basically trounces all over you, but it's fun to
play anyway.

The main focus of this part of the assignment is designing and implementing the recursive
algorithms required to find and verify words that appear in the Boggle board. This problem
is larger than either of the two problems appearing in Handout 19, so don’t be lulled into
thinking it can be done in one sitting.

 2

How's this going to work?

You will read the letter cubes in from a file and shake the cubes up and lay them out on
the board graphically. The human player gets to go first (nothing like trying to give yourself
the advantage). The player proceeds to enter, one at a time, each word that she finds.
Your program is to verify that the word meets the minimum length requirement (which is
4), has not been guessed before, is a legal word in the English language, and can, in fact,
be formed from the dice on the board. If so, the letters forming the word are highlighted,
the word is added to the player's word list, and she is awarded points according to the
word's length.

The player indicates that she is done entering words by hitting a lone extra carriage return.
At this point, the computer gets to take a turn. The computer player searches through the
board looking for words that the player didn't find and award itself points for finding all of
them. The computer typically beats the player mercilessly, but the player is free to try
again, you should play as many games as you want before exiting. Each time you repeat
this entire process.

The Dice

The letters in Boggle are not simply chosen at random. Instead, the letters on the faces of
the cubes are arranged in such a way that common letters come up more often and it is
easier to get a good mix of vowels and consonants. To recreate this, we give you a text file
that contains descriptions of the actual sixteen dice used in Boggle. (We’ve also included a
file for the 5 x 5 version of Boggle, but that’s completely optional and you don’t need to
build the 5 x 5 version if you don’t want to.) Each die description is a single line of 6
letters; they are not separated by spaces. For example, the 4 x 4 file might look something
like this:

 EDAIJW
 KZBEDT
 ULNEEP
 // 13 more lines follow this one

During initialization, you read the dice file and store it into a suitable data structure for
subsequent use. At the beginning of each game, you "shake" the dice to randomly set-up
the board. There are two different random aspects to consider. First, the cubes themselves
need to be shuffled so that the same die is not always in the same cell of the board.
Second, a random side from each die needs to be chosen to be the face-up letter.

 3

Choosing a random side is a straightforward use of the random library. Shuffling is slightly
more involved, and complicated a bit because of the two-dimensional nature of the data
structure. To re-arrange the cubes themselves, you can use the simple shuffling algorithm
given by this pseudo-code to mix up the elements in a two dimensional grid:

for (int lh = 0; lh < board.numRows * board.numCols(); lh++) {
 int rh = RandomInteger(lh, board.numRows * board.numCols() – 1);
 swap(board[lh / board.numCols()][lh % board.numCols],
 board[rh / board.numCols()][rh % board.numCols]);
}

Basically, this walks over the grid selecting a random element to place in each slot. Put
something like this together with a way to select the side to put up in each position and
you should be able to shuffle the dice into many different board combinations.

Alternatively, the user may decide to enter his or her own board configuration. In this
case, you can still use your same data structure. The only difference is where the letters
come from. If the user wishes to enter in a custom board, you should prompt them for a
string of sixteen characters, representing the cubes from left to right, top to bottom (as you
would read a book). You should verify that this string is at least sixteen characters and re-
prompt if it is too short. If it’s longer than sixteen characters, just ignore those characters
after the ones you need. You don’t need to verify that the characters are legal letters.
Once your initialization is complete, you’re ready to implement the two types of recursive
search: one for the user, and one for the computer.

There are two distinct types of recursion happening here. For the user, you search for a
specific word and stop as soon as you find it. For the computer, you are searching for all
words. While you may be tempted to try and integrate the two so they work as a single
type of recursion, this is not a good idea for two reasons. One is that your program will get
very messy trying to integrate the two, as they are not algorithms that can be unified well.
The other is that we want you to get practice with both types. Because of this, we
explicitly require that you implement two separate recursive functions, one for the human
player's turn (searching for a specific word) and for the computer’s turn (exhaustive search
for all words).

 4

The human player's turn

After the board is displayed, the player gets a chance to enter all the words she can find on
the board. Your program must read in a list of words until the user signals the end of the
list by typing a blank line. As the user enters each word, your program must check the
following conditions:

• That the word is at least four letters long.
• That it is defined in the lexicon as a legal word.
• That it occurs legally on the board (i.e., it is composed of adjoining letters such that

no board position is used more than once).
• That it has not already been included in the user’s word list.

If any of these conditions fail, you should tell the user about it and not give any score for
the word. If, however, the word satisfies all these conditions, you should add it to the
user’s word list and update their score appropriately. In addition, you should use the
facilities provided by the gboggle.h interface to highlight the word. Because you don’t
want the highlight to remain on the screen indefinitely, you should highlight the letters in
the word, pause for about a second using the Pause function in the extended graphics
library, and then go back and remove the highlights from the letters in the word.

Word length determines point value: 1 point for the word itself and 1 additional point for
every letter over the minimum. Since the minimum word length is 4, "boot" gets 1 point,
"smack" gets 2, and "frazzled" gets 5. The functions in the gboggle module will
help you to display the player word lists and track the scoring. The player enters a lone
carriage return (blank line) when done entering words.

The computer's turn

On the computer’s turn, your job is to find all of the words that the human player missed
by recursively searching the board for words beginning at each square on the board. In
this phase, the same conditions apply as on the user’s turn, plus the additional restriction
that the computer is not allowed to count any of the words already found.

As with any exponential search algorithm, it is important to limit the search as much as you
can to ensure that the process can be completed in a reasonable time. One of the most
important strategies is to recognize when you are going down a dead end so you can
abandon it. For example, if you have built a path starting with the prefix "zx", you can
use the lexicon's containsPrefix method to determine that there are no English words
beginning with that prefix. So, you can stop right there and move on to more promising
combinations. If you miss this optimization, you'll find yourself taking long coffee breaks
while the computer is busy checking out non-existent words like "zxgub", "zxaep", etc.
Not what you want.

 5

The gboggle module

As mentioned before, we have written all the fancy graphics functions for you. The
functions from the gboggle.h interface are used to manage the appearance of the game
on the display screen. It includes functions for initializing the display, labeling the cubes
with letters, highlighting cubes to indicate that they are part of a word, and displaying
words found by each player. Read the interface file (in the starter folder) to learn how to
use the exported functions. The implementation is provided to you in source form so you
can extend this code in your own novel ways.

Solution strategies

In a project of this complexity, it is important that you get an early start and work
consistently toward your goal. To be sure that you’re making progress, it also helps to
divide up the work into manageable pieces, each of which has identifiable milestones.
Here's a suggested plan of attack that breaks the problem down into the following five
phases:

• Task 1—Dice reading, board drawing, dice shaking. Design your data structure for
the dice and board. It will help to group related data into sensible structures rather
than pass a dozen parameters around. You should not use any global variables in
this program. Read the dice file and store the dice. Create your shuffling routine.
Use the gboggle routines to draw the starting board. Add an option for the user to
specify a particular board configuration.

• Task 2—User's turn (except for finding words on the board). Write the loop that
allows the user to enter her words. Reject words that have already been entered or
that don't meet the minimum word length or that aren't in the lexicon. Do not
assume there is any upper limit on the number of words that may be found by the
user. Put the gboggle functions to work for you adding words to the graphical
display and keeping score. At this point, the words the user enters may or may not
be possible to form on the board, that's coming up next.

• Task 3—Find a given word on the board. Now you will go to test your recursive
talents in verifying that the user's words can actually be formed from the board.
Remember that a valid word must obey the neighbor and non-duplication rules.
You should search the board recursively, trying to find a legal formation of the user's
word. This recursion is what you might call a "fail-fast" recursion, as soon as you
realize you can't form the word starting at a position, you need to move on to the
next position. Reject any word that cannot be formed from the letters currently on
the board. Use the highlighting function from gboggle to temporarily draw
attention to the letters in the word once you have verified it can be formed on the
board.

• Task 4—Find all the words on the board (computer's turn). Now it's time to
implement the killer computer player. Your computer player will make mincemeat
of the paltry human player by traversing the board and finding every word the user
missed. This recursion is an exhaustive search, so you will completely explore all
positions on the board hunting for possible words. This phase is where the most

 6

difficult applications of recursion come into play. It is easy to get lost in the
recursive decomposition and you should think carefully about how to proceed.

• Task 5—Loop to play many games, add polish. Once you can successfully play one
game, it's a snap to allow the user can play as many games as she likes. Finish off
the little details. Make sure you gracefully handle all user input. Add sounds, if
you're up for it. Note that adding sounds is not a requirement for the assignment.

A little more challenge: fun extras and extension ideas

As with most assignments, Boggle has many opportunities for extension. The following list
may give you some ideas but is in no sense definitive. Use your imagination!

• Make the Q a useful letter. Because the Q is largely useless unless it is adjacent to a
U, the commercial version of Boggle prints Qu together on a single face of the cube.
You get to use both letters together—a strategy that not only makes the Q more
playable but also allows you to increase your score because the combination counts
as two letters.

• Embellish the program with better graphics. The current game merely highlights the
word; the words might be clearer if it also drew lines or arrows marking the
connections.

• Use the mouse to trace the word on the board. The extended graphics library allows
you to read the location of the mouse and determine whether the button is pressed.
You can use these functions to allow the user to assemble a word by clicking or
dragging through the letter cubes.

• Add sound. Just for fun, there is a random smattering of sound files provided with
the project you can sprinkle about to liven up the game. Our CS106 sound.h
header file exports the function PlayNamedSound, which allows you to play a
sound from a file. There is another exported function SetSoundOn that gives you
a global control for enabling or disabling sound to avoid annoying your long-
suffering roommate during your late night coding marathons. Take a look in the
Sounds folder of the starter project to see the various sound files we’ve put
together.

Accessing files

On the class web site, there are two folders of starter files: one for XCode and one for
Visual Studio. Each folder contains these files:

boggle.cpp Source file for your Boggle game implementation.
gboggle.cpp Source file which implements the gboggle interface.
gboggle.h Interface file for the gboggle module.
cubes16.dat Data file containing the boggle cubes for a 4 x 4 board.
cubes25.dat Data file containing the boggle cubes for a 5 x 5 board. (This

one is completely optional.)
lexicon.dat Data file containing a large word list for the lexicon in binary

format.

 7

Sounds Directory of sound files
BoggleDemo A working program that illustrates how the game is played.

Deliverables

As always, you are to submit both a printed version of your code in lecture, as well as an
electronic version. Both are due by 5:00 p.m. on Friday (though solutions to the problems
treated by Handout 18 are due the previous Monday by 5:00 p.m.). When submitting the
electronic version, please submit only the source files you edited (most likely just
boggle.cpp. We don't need library and sound files and so on, unless there are special
extensions you've added to them).

